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Temporal evolution of a distribution function P�X , t� for X clusters is analyzed in aggregation-chipping
processes, which is a model incorporating simultaneously aggregation and the chipping off of a monomeric
unit from a randomly chosen aggregate. Numerical simulations show that P�1, t� exhibits the singular time
dependence P�1, t�− P�1,��� t−2/3. Using this time dependence, we find a notable double power-law distribu-
tion of P�X , t� with universal exponents −5 /2 and −3 /2 at a sufficiently large t. In finite systems, clusters in the
second power law with the exponent −3 /2 eventually coagulate into one “monopolized” cluster. These analy-
ses are in good agreement with the results of the simulation.
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The aggregation process is a general foundation for un-
derstanding many phenomena in both natural and social sci-
ences. Though abundant work has been published already
�1,2�, the aggregation process still reveals new aspects when
it is seen from different points of view. This irreversible pro-
cess is represented by the Smoluchowski coagulation equa-
tion and often shows nontrivial distributions, such as the
power-law distribution.

Some years ago, a model with a “chipping” process in
addition to the aggregation was investigated by Krapivsky
and Render �3�, and Majumdar et al. �4� discovered the ex-
istence of a dynamical phase transition in the mass distribu-
tion of this model. The “chipping” process they investigated
is one where a bit of the mass chips off at a certain rate and
coagulates with the neighboring mass. This model conserves
the total mass, and when the total mass exceeds a critical
value, the distribution shows a drastic change which repre-
sents the appearance of the one big mass cluster in the dis-
tribution.

Furthermore, the aggregation process has been applied to
the study of economics, especially the study of wealth distri-
bution. The distribution of high-tax payers obeys, in almost
every country, a power law which is widely known as the
Pareto distribution �5�. Yamamoto et al. �6–8� proposed a
simple model for the Pareto distribution, and their simulation
shows a good fit with the data on chief executive officers
�CEOs� in Japan and the USA.

The model considered here can be summarized as fol-
lows: initially N clusters are set where each cluster has a
certain number of units, according to an initial distribution.
The unit process consists of two parts, aggregation and chip-
ping. First, two clusters chosen at random �X and Y clusters�
are integrated and make one big cluster �X+Y cluster�. Sec-
ond, one unit is chipped off from a randomly chosen cluster

which has more than 2 units �Z��2�-cluster� and becomes a
1 cluster. In a one unit process, therefore, the total number of
the clusters is conserved �X, Y, and Z clusters are changed
into �X+Y�, �Z−1�, and 1 clusters�. The whole process pro-
ceeds by repeating the unit process. Note that this process
also conserves the total number of units as well as the total
number of clusters.

The basic equations for the probability distribution func-
tion P�X , t� for X clusters are given by

�1 − P�1,t���1 − P�1,t�� +
P�2,t�

1 − P�1,t�
− �P�1,t��2

=
dP�1,t�

dt
�X = 1� , �1�

�
i+j=X

P�i,t�P�j,t� +
P�X + 1,t�
1 − P�1,t�

− 2P�X,t��1 +
1

1 − P�1,t��
=

dP�X,t�
dt

�X � 2� . �2�

We have already reported an analysis for the steady state of
this model �9�. In a previous paper, it is explained that the
mean value �X	 can be seen as a control parameter, and in the
finite system, with �X	�2, the distribution is made of two
parts, the power-law component and one “monopolized”
cluster which almost has the units ��X	−2��N. These results
of the steady states are essentially the same as those of Ma-
jumdar et al. �4�, although the total number of clusters is not
kept constant in their model. For the nonsteady state, we
have performed numerical simulations. The results for
P�1, t� are plotted in Fig. 1. It becomes evident that P�1, t�
exhibits singular time dependence

P�1,t� − P�1,�� 
 t−2/3. �3�

We have also done the simulations with different initial
distributions and different mean values. We have found that
this behavior of P�1, t� does not depend on mean values and
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initial distributions. That is, the singular time dependence of
P�1, t� does not come from the singularity in initial distribu-
tions �10�.

Obtaining the time dependence of P�1, t� makes it pos-
sible to investigate the time dependence of the characteristic
function 	�z , t�=�X=0

� P�X , t�z−X. Equations �1� and �2� are
rendered into the basic equation of 	�z , t�,

�1 − P�1,t��	�z,t�2 + �z − 3 + 2P�1,t��	�z,t� − P�1,t� +
1

z

=
d	�z,t�

dt
. �4�

We analyze this equation by the perturbation expansion. Let
	�z , t� be expanded as

	�z,t� = 	0�z� + 
	1�z,t� , �5�

where

	0�z� = 3 − 2z − 2z�1 −
1

z
�3/2

�6�

is the characteristic function for steady state �9�. Substituting
this into Eq. �4�, we have the following equation in the first
order of 
:

d	1�z,t�
dt

= − 	1�z,t�z�1 −
1

z
�3/2

− 4z2t−2/3�1 −
1

z
+ �1 −

1

z
�3/2�2

. �7�

The solution of Eq. �7� is

	1�z,t� = A�z,t�exp�− z�1 −
1

z
�3/2

t� , �8�

A�z,t� = 
t0

t �− 4z2t−2/3�1 −
1

z
+ �1 −

1

z
�3/2�2�

� ez�1 − �1/z��3/2tdt + A�z,t0� . �9�

Now the scaling relation can be discussed. We define the
scaling variable �,

� = z�1 −
1

z
�3/2

t , �10�

and we find that the most singular term is

	�z,t� 
 	0�z� − 4
z�1 −
1

z
�3/2

���� + A0e−�, �11�

���� = e−�
�0

�

��−2/3e��d��. �12�

The scaling function ���� obeys the inequality under the
conditions � ,�0�1,

�−2/3�1 − e�0−��  ����  �−2/3 − �0
−2/3e�0−�

+ 2�0
−1/2e�0−�� 1

2�0
+

1

�2�0�2 +
1

�2�0�3 + ¯�
+ 2� 1

2�
+

1

�2��2 +
1

�2��3 + ¯� . �13�

For the derivation of this inequality, see the Appendix. At a
certain fixed time t1 which is large enough, therefore, the
asymptotic behavior of 	�z , t� reads

	�z,t1� � 	0�z� − 4
z�1 −
1

z
�3/2�z�1 −

1

z
�3/2

t1�−2/3

� 	0�z� − 4
t1
−2/3�1 −

1

z
�1/2

. �14�

Equation �14� gives us the justification for the perturbation
expansion. For the calculation, we ignore the second-order
term �	1�z��2. From Eq. �14�, the second-order term �	1�2 is
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FIG. 2. �Color online� Simulation result of the cumulative dis-
tribution with the number of the members N=100 000 and the mean
value �X	=3.

FIG. 1. �Color online� Simulation result for the time dependence
of P�1, t� with the number of the members N=100 000 and the
mean value �X	=3.
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less singular than 	1. This is consistent with our assumption.
It is clear that there must be some cutoff for this

asymptotic behavior, otherwise the total mass represented by
the second term of Eq. �14� would be infinite. From the
condition ��1,

z�1 −
1

z
�3/2

�
1

t
, � z − 1 � t−2/3, �15�

near z�1. We introduce here this condition �15� in z space
which shows the existence of the cutoff in real space for the
asymptotic behavior �14�. For further discussion, let us com-
pare each term of the characteristic function P�X�z−X be-
tween z=1 and z−1=
�1. The term z−X is enough small
when X�1 /
. Thus, it is difficult to see the contribution of
P�X� for the characteristic function over X�Xc�1 /
. There-
fore this Xc� 1


 can be treated as the cutoff in real space, and
from the condition �15� it behaves as Xc� t2/3. In our simu-
lations, the biggest cluster grows as t2/3, therefore we believe
it represents the behavior of the cutoff Xc.

What Eq. �14� signifies is that at an appropriate time and,
of course, XXc, the distribution displays the double power
law, the steady part of P�X��X−5/2 coming from 	0�z�, and
the nonsteady part of P�X��X−3/2 coming from �1− 1

z �1/2 in
the second term of Eq. �14�. As time goes by, this nonsteady
X1/2 part continues to coagulate, eventually to one cluster in
finite systems. Here we show the simulation result of P�X�
�Fig. 2�. The cumulative distribution of P�X� is assuredly
made by two power laws X−3/2 and X−1/2.

Notice that these exponents are universally observed in
the aggregation processes. For the constant kernel, if the pro-
cess has some injection and the total number of units grows,
the exponent −3 /2 is observed �1,10�. On the other hand, one
can see the exponent −5 /2 when the process has some con-
servation mechanism of the total units �11�.

We have checked the scaling relation in the simulation
results. Figure 3 shows the scaling function ���� versus �
with several values of z. It is clear that the scaling relation
holds when �=z�1−1 /z�3/2t is large enough, i.e., when the
time proceeds sufficiently. Simulations have been also car-

ried out for different mean values �X	 in the range 2.1
� �X	�202, and the scaling relation holds in the whole re-
gion �Fig. 4�.

Our analysis provides two aspects. First, the time depen-
dence of the model is elucidated. Therefore we now know
the origin and the making process of the “monopolized”
cluster in Refs. �4� and �9�. Second, this gives us a good
possibility of comparison with experiments in natural and
social sciences.

When the time t is fixed, the limit z→1 corresponds to
the limit X→� of P�X�. Within this limit, though we can see
only in the range z−1� t�−2/3�, our analysis shows that the
distribution is a double power law, shown in Fig. 2. In the
limit t→� with fixed z, on the other hand, 	1�z , t�→0 and
P�X�→0 when X is above a certain value. This state is what
Majumdar et al. and we have shown previously. Each state
has a fifty-fifty chance to be observed in experiments. That
is, our results increase the opportunities of experimental veri-
fication. We believe this study helps the understanding of the
deep “magic” in the aggregation systems.

APPENDIX: DERIVATION OF THE INEQUALITY (13)

When � ,�0�1, in the range �0���

��−2/3 � �−2/3. �A1�

Thus,

���� = e−�
�0

�

��−2/3e��d�� � e−�
�0

�

�−2/3e��d��

= �−2/3�1 − e�0−�� . �A2�

Also in that range, ��−5/3��−2/3, then
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FIG. 3. �Color online� Simulation result of ���� versus � with
the number of the members N=100 000 and the mean value �X	
=3.
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FIG. 4. �Color online� Simulation result of ���� versus � with
the number of the members N=100 000 and the mean value �X	
=202.
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���� = �−2/3 − �0
−2/3e�0−� +

2

3
e−�

�0

�

��−5/3e��d��  �−2/3 − �0
−2/3e�0−� +

2

3
e−�

�0

�

��−2/3e��d��

= �−2/3 − �0
−2/3e�0−� − 2��−1/2 − �0

−1/2e�0−�� + 2e−�
�0

�

��−1/2e��d��

= �−2/3 − �0
−2/3e�0−� − 2��−1/2 − �0

−1/2e�0−�� + 2�0
−1/2e�0−��1 +

1

2�0
+

1

�2�0�2 +
1

�2�0�3 + ¯�
+ 2�1 +

1

2�
+

1

�2��2 +
1

�2��3 + ¯�
= �−2/3 − �0

−2/3e�0−� + 2�0
−1/2e�0−�� 1

2�0
+

1

�2�0�2 +
1

�2�0�3 + ¯� + 2� 1

2�
+

1

�2��2 +
1

�2��3 + ¯� . �A3�
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